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Abstract

The modal characteristics of constrained multibody systems undergoing rotational motion are
investigated in this paper. Relative co-ordinates are employed to derive the equations of motion, which
are generally non-linear in terms of the co-ordinates. The dynamic equilibrium position of a constrained
multibody system needs to be obtained from the non-linear equations of motion, which are then linearized
at the dynamic equilibrium position. The mass and the stiffness matrices for the modal analysis can be
obtained from the linearized equations of motion. To verify the effectiveness and the accuracy of the
proposed method, numerical examples are solved and the results obtained by using the proposed method
are compared with analytical and numerical results obtained by other methods. The proposed method can
be used effectively for the design of constrained multibody systems undergoing rotational motion.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Mechanical systems can be modelled as constrained multibody systems that consist of rigid and
flexible bodies, joints, springs, dampers, forces and so on. In general, the equations of motion
governing constrained multibody systems consist of non-linear differential and algebraic
equations. To obtain the response of a constrained multibody system, several computational
methods were introduced since early 1960s (see Refs. [1–4]). Several commercial programs for
multibody system analysis (see, for instance, Refs. [5–7]) are available nowadays. By using these
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programs, kinematic, dynamic, and static equilibrium analyses of constrained multibody systems
can be performed. If a constrained multibody system has a static equilibrium position (this is often
called a state of rest), its modal characteristics, which are often important for system design, can
be also obtained. Equations of motion are linearized at the static equilibrium position and the
mass and the stiffness matrices for the modal analysis can be obtained. Sohoni and Whitesell [8]
introduced a linearization method based on a generalized co-ordinate partitioning method in
which dependent co-ordinates are eliminated. Lynch and Vanderploeg [9] proposed another
linearization method employing QR decomposition by which a constrained set of equations can
be converted to an unconstrained set of equations. By using these methods, the modal
characteristics of a constrained multibody system in state of rest could be obtained.
There exists a state of motion which resembles the state of rest. In the state of motion, one may

choose a set of generalized co-ordinates which becomes constant. This state which is determined
by the set of generalized co-ordinates will be hereinafter called a dynamic equilibrium state. For
explanation, let us consider a rotating pendulum system shown in Fig. 1. The pendulum is
connected by a revolute joint and the vertical shaft is made to rotate with a constant angular
speed. The dynamic equilibrium state of the system can be easily calculated if a proper generalized
co-ordinate is chosen. The angle between the shaft and the pendulum may be chosen as the
generalized co-ordinate, which becomes constant at the dynamic equilibrium state. It is important
to choose a proper set of generalized co-ordinates if one has the purpose to find the dynamic
equilibrium state effectively. As shown from the above example, relative angles and displacements
between bodies are the best candidates for the purpose. Such co-ordinates are often called relative
co-ordinates (see, for instance, Refs. [10,11]).
Constrained multibody systems undergoing rotational motion (such as rotating pendulums)

exhibit distinct modal characteristics. As their angular speeds vary, their natural frequencies
usually vary, too. The varying modal characteristics need to be predicted accurately for a proper
system design. However, the varying modal characteristics cannot be calculated directly by using
any existing multibody analysis programs (though some of them have the capability to calculate
the modal characteristics of constrained multibody systems in states of rest). Actually, even
dynamic equilibrium states cannot be calculated efficiently by using any existing commercial
codes. To obtain a dynamic equilibrium state of a constrained multibody system (by using existing
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Fig. 1. Configuration of a rotating pendulum system.

D.H. Choi et al. / Journal of Sound and Vibration 280 (2005) 63–7664



commercial codes), a transient dynamic analysis should be performed with a prescribed rotational
motion, which increases smoothly and reaches constant angular velocity. Then the modal
characteristics can be obtained by analyzing the oscillatory motion around the dynamic
equilibrium state. If the system has one degree of freedom, one may count the number of
oscillation to find the natural frequency. However, if the system has more than one degree of
freedom, the oscillatory motion has to be analyzed by using a Fourier transformation method.
This procedure is time consuming and obviously not proper for design.
The purpose of this paper is to propose a numerical method to calculate the modal

characteristics of constrained multibody systems undergoing rotational motion. Relative co-
ordinates are employed to describe a constrained multibody system and a velocity transformation
matrix is employed to derive the equations of motion. If the system has closed kinematic loops,
constraint forces arising from the closed-loops can be eliminated by using the velocity
transformation matrix. A formulation to seek the dynamic equilibrium state of a constrained
multibody system undergoing rotational motion is first presented. Then linearization procedures
for open and closed-loop systems are presented. To verify the effectiveness and the accuracy of the
proposed method, numerical examples are solved and the results are compared with analytical
and numerical solutions by other methods.

2. Equations of motion

In three-dimensional space, a free rigid body’s configuration can be determined by six
co-ordinates. Three scalar variables are employed to determine the position of a point (for
instance, the center of mass) fixed in the rigid body and three successive rotation angles (often
named as Euler angles) are employed to determine the orientation of the body. The co-ordinate
set of the ith body of a multibody system is denoted as xi: If a multibody system consists of n rigid
bodies, its total co-ordinate set (named and denoted as a Cartesian co-ordinate set x) consists of n
co-ordinate sets as follows:

x ¼ ½xT1 xT2 ? xTn �
T: ð1Þ

By employing the Cartesian co-ordinate set, the equations of motion of a constrained
multibody system can be derived (see Ref. [12]) as follows:

M .xþ UT
xk ¼ Q; ð2Þ

whereM is a mass matrix, Q is a generalized force matrix, and k is a Lagrange multiplier matrix.
The matrix U represents algebraic constraint equations that originate from kinematic joints and
Ux is the Jacobian matrix which is the partial derivative of the constraint equations with respect to
the Cartesian co-ordinate set.
A closed-loop multibody system can be transformed into a open-loop multibody system by

cutting joints as shown in Fig. 2. So, the number of cut joints is same as the number of closed
loops. The constraint equations that originate from the cut joints are denoted asUc and the rest of
the constraint equations are denoted as Ur: So, the total constraint equations consist of the two
sets of equations as follows:

U ¼ ½UcT UrT �T: ð3Þ
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Now Eq. (2) can be rewritten as follows:

M .xþ UcT
x kc þ UrT

x kr ¼ Q; ð4Þ

where kc and kr represent the Lagrange multipliers for Uc
x and Ur

x; respectively.
The equations of motion can be transformed into a reduced form by employing relative co-

ordinates. For the purpose, the following relation is often employed:

’x ¼ B’q; ð5Þ

where B is the velocity transformation matrix, ’q is the time derivative of relative co-ordinates q
and the transpose of B is the null space of UrT

x : This relation is often called the velocity
transformation (see, Ref. [13]). One may choose some of ’q (which will be denoted as ’qP) to
prescribe a constant rotational motion for a constrained multibody system. The rest of ’q will be
denoted as ’qR: Then, Eq. (5) can be rewritten as follows:

’x ¼ BP ’qP þ BR ’qR; ð6Þ

where the velocity transformation matrix BP and BR are sub-matrices associated with the co-
ordinates qP and qR:
Now, by differentiating Eq. (6), the following equations can be obtained:

.x ¼ BP .qP þ ’BP ’qP þ BR .qR þ ’BR ’qR: ð7Þ

Now substituting Eq. (7) into Eq. (4) and pre-multiplying the results by BTR; one obtains the
following equation:

BTR½Mð ’BP ’qP þ BR .qR þ ’BR ’qRÞ þ UcT
x kc� ¼ BTRQ: ð8Þ

Note that BTRUrT
x and .qP are null matrices (since B

T is the null space of UrT
x and ’qP is constant).

Now the following relation can be used to further simplify the above equation:

UqR
¼

@U
@x

@x

@qR

¼ Ux

@ ’x

@’qR

¼ UxBR; ð9Þ
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Fig. 2. Schematic representation of a closed-loop system.
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where the dot cancellation law (see Ref. [14]) is employed. By using Eq. (9), Eq. (8) can be
rewritten as follows:

M� .qR þ UcT
qR

kc ¼ Q�; ð10Þ

where

M� ¼ BTRMBR; ð11Þ

Q� ¼ BTRQ� BTRðM ’BP ’qP þM ’BR ’qRÞ: ð12Þ

The acceleration constraint equations, the second time derivatives of the constraint equations
Uc ¼ 0; can be written as follows:

Uc
qR
.qR ¼ cc; ð13Þ

where

cc ¼ �ðUc
qR
’qRÞqR

’qR � 2Uc
qRt ’qR � Uc

tt: ð14Þ

Eqs. (10) and (13) are used to perform a dynamic analysis of a constrained multibody system
undergoing a constant rotational motion.

3. Linearization and modal equations

In order to find the modal characteristics of a constrained multibody system undergoing
constant rotational motion, the dynamic equilibrium state of the system has to be found first.
Since relative co-ordinates are employed, qR becomes constant at the dynamic equilibrium state.
So its time derivatives ’qR and .qR are all zero. Substituting these conditions into Eq. (10), one can
obtain the following algebraic equations to find the equilibrium state:

BTRðM ’BP ’qP �QÞ þ UcT
qR

kc ¼ 0: ð15Þ

The above equations along with the constraint equations (Uc ¼ 0) have to be solved to find the
dynamic equilibrium positions. Since these equations are non-linear, the well-known Newton–
Raphson procedure can be used to solve them. The detailed procedure is given as follows:

fzDz
i ¼ �f; ð16Þ

ziþ1 ¼ zi þ Dzi; ð17Þ

where

f ¼
BTRðM ’BP ’qP �QÞ þ UcT

qR
kc

Uc

" #
; ð18Þ

z ¼
qR

kc

" #
: ð19Þ

By solving the above equations, qR and kc can be obtained. The values of qR which are obtained
from the equilibrium equations will be used later to obtain the modal equations.
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To obtain the modal equations, Eq. (10) has to be transformed into a minimum set of equations
of motion. For the purpose, the generalized co-ordinate partitioning method is employed and qR

is partitioned as follows:

qR ¼ ½uT vT�T; ð20Þ

where u and v represent dependent and independent co-ordinate sets, respectively. Several
methods of selecting independent co-ordinate sets are known (see, for instance, Ref. [12]).
Differentiation of the constraint equations ðUc ¼ 0Þ yields the following constraint velocity
equations:

Uc
qR
’qR ¼ 0: ð21Þ

This equations can be rewritten in terms of dependent and independent velocity vectors ’u and ’v as

Uc
u ’uþ Uc

v’v ¼ 0: ð22Þ

Therefore, the constraint Jacobian matrix Uc
qR
should be partitioned as follows:

Uc
qR

¼ ½Uc
u Uc

v�; ð23Þ

where the Jacobian matrices Uc
u and Uc

v are sub-Jacobian matrices associated with the co-
ordinates u and v:
Now, ’qR can be expressed as a function of ’v as follows:

’qR ¼ R’v; ð24Þ

where R is defined as follows:

R ¼
�Uc�1

u Uc
v

I

" #
: ð25Þ

Pre-multiplying Eq. (10) by RT results in a minimum set of equations of motion as follows:

RTM�R.vþ RTM� ’R’v� RTQ� ¼ 0: ð26Þ

Note that RT is the null space of UcT
qR
: Eq. (26) can be linearized at the dynamic equilibrium state

and the following modal equations can be obtained to investigate the modal characteristics of the
system:

#M�d.vþ #C�d’vþ #K�dv ¼ 0; ð27Þ

where #M�; #C� and #K� are the mass, the damping and the stiffness matrices of the modal
equations. The mass matrix #M� is given analytically in Eq. (26). The damping and the stiffness
matrices may be also obtained analytically. However, a simple finite difference method is
employed to obtain them in the present study. For instance, the following equation represents the
simple finite difference method to calculate #K�:

#K� ¼
hðv� þ dvÞ � hðv�Þ

dv
; ð28Þ

where h denotes �RTQ� in Eq. (26) and v� represents the independent co-ordinate value in the
dynamic equilibrium position.
Note that Eq. (27) is a homogeneous equation. Non-homogeneous terms are not needed to

analyze the free vibration modal characteristics.
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4. Numerical results and discussion

Fig. 3 shows a rotating double pendulum, which has an open kinematic loop. Two uniform
bars, each of mass m ¼ 3 kg and length L ¼ 1 m; are connected by a pin joint. The first bar is
pinned to a vertical shaft. The axes of the pin joints are parallel to each other and horizontal. If
the vertical shaft is made to rotate with constant angular speed, the system can move in such a
way that y1 and y2 remain constant. Therefore, qP and qR are chosen as follows:

’qP ¼ O; ð29Þ

qR ¼ ½y1 y2�T: ð30Þ

In this system the equilibrium equations for qR are given as follows:

BTRðM ’BP ’qP �QÞ ¼ 0: ð31Þ

These equilibrium equations can be also obtained analytically (see Ref. [15]) and these are given as
follows:

LO2

g

� �
cos y1ð8 sin y1 þ 3 sin y2Þ � 9 sin y1 ¼ 0; ð32Þ

LO2

g

� �
cos y2ð3 sin y1 þ 2 sin y2Þ � 3 sin y2 ¼ 0: ð33Þ

The dynamic equilibrium positions q�R can be obtained from above equilibrium equations.
Now, the equations of motion for this system can be written as follows:

g ¼ BTRMBR .qR þ BTRðM ’BR ’qR þM ’BP ’qP �QÞ ¼ 0: ð34Þ
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Fig. 3. Open-loop example (double pendulum).
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Therefore, the linearized mass, damping, and stiffness matrices can be calculated as

#M� ¼
@g

@.qR

j
q�

R
¼ ðBTRMBRÞqR¼q

�
R
; ð35Þ

#C� ¼
@g

@’qR

j
q�

R
¼

@

@’qR

½BTRðM ’BR ’qR þM ’BP ’qP �QÞ�
qR¼q

�
R
; ð36Þ

#K� ¼
@g

@qR

j
q�

R
¼

@

@qR

½BTRðM ’BR ’qR þM ’BP ’qP �QÞ�
qR¼q

�
R
: ð37Þ

The simple finite difference method is used to calculate them. The corresponding natural
frequencies can be obtained analytically, too. Tables 1 and 2 show the angles of y1 and y2 in
dynamic equilibrium states and the natural frequencies, respectively. The numerical results
obtained by using the proposed method are in good agreement with the corresponding analytical
results. Fig. 4 shows the variations of the first and the second natural frequencies. As the shaft
angular speed increases, the natural frequencies decreases first and then increases. Especially, the
first natural frequency reaches zero at an angular speed of the shaft before it increases. Fig. 5
shows that y1 and y2 in dynamic equilibrium states remain zero until the shaft angular speed
exceeds the angular speed at which the first natural frequency becomes zero.
Fig. 6 shows a governor mechanism which has two closed kinematic loops. Body 1 of the system

is the spindle which is driven by a constant angular speed; bodies 2 and 3 are pendulums which
have a sphere mass at each end; and body 4 is the collar. The spindle and the pendulums are
connected by revolute joints; the spindle and the collar are connected by a translational joint and
a spring; and the collar and the pendulums are connected by distance joints having fixed distance
of 0:1092 m: The stiffness and the free length of the spring are 1000 N=m and 0:15 m; respectively.
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Table 1

Equilibrium positions of the double pendulum versus angular speed

Analytic solution Proposed method

y1 ðradÞ y2 ðradÞ y1 ðradÞ y2 ðradÞ

o ¼ 3 rad=s 0.5777 0.7404 0.5777 0.7404

o ¼ 6 rad=s 1.347 1.405 1.347 1.405

o ¼ 9 rad=s 1.472 1.498 1.472 1.498

Table 2

Natural frequencies of the double pendulum versus angular speed

Angular speed (rad/s) First natural frequency Second natural frequency

Present Analytical Present Analytical

o ¼ 3 1.793 1.793 7.669 7.669

o ¼ 6 5.875 5.875 16.70 16.70

o ¼ 9 8.963 8.963 25.19 25.19
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Table 3 shows the inertia properties of the system components and Table 4 shows the co-
ordinates of some points (shown in Fig. 6) that determine the configuration of the system. Since
this system has two closed loops, two distance joints between collar and balls are cut. For modal
analysis, the relative distance d between spindle and collar is chosen as an independent co-
ordinate.
The variation of the natural frequency versus the angular speed is shown in Fig. 7. Different

from the previous example, the natural frequency increases monotonically. As shown in the figure,
there exists an angular speed which matches to the natural frequency. Such an angular speed is
often called the critical angular speed. Since angular motion induces inertia force, the critical
angular speed induces a harmonic excitation force which causes resonance of the system.
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Fig. 4. Natural frequency variations versus angular speed.

Fig. 5. Variations of the dynamic equilibrium positions.
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Therefore, the operating speed of the governor mechanism needs to be located far from the critical
angular speed.
Fig. 8 shows a cantilever beam which is fixed to a rotating rigid hub. The geometric and

material properties of the cantilever beam are shown in Table 5. For the multibody formulation,
the beam is discretized into 51 rigid bodies that are connected through 50 beam elements as shown
in Fig. 8. Body 1 is the rotating hub and bodies 2–52 are the discretized rigid bodies. The hub and
the ground are connected by a revolute joint; hub and body 2 are connected by a fixed joint; and
the rest contiguous bodies are connected by beam elements.
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Fig. 6. Closed-loop example (governor mechanism).

Table 3

Inertia properties of the governor mechanism’s bodies

Body Mass (kg) Moment of inertia ðkg m2Þ

Ix0x0 Iy0y0 Iz0z0

Spindle 200.0 25.0 50.0 50.0

Ball 1 1.0 0.1 0.1 0.1

Ball 2 1.0 0.1 0.1 0.1

Collar 1.0 0.15 0.15 0.15

Table 4

Initial positions of points in the governor mechanism

Point Initial position (m)

O1 ½0:0; 0:2; 0:0�
O2 ½�0:16; 0:2; 0:0�
O3 ½0:16; 0:2; 0:0�
O4 ½0:0; 0:1256; 0:0�
P ½�0:08; 0:2; 0:0�
Q ½0:08; 0:2; 0:0�
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Fig. 9 shows arbitrary two contiguous rigid bodies i and j which are connected by a beam
element. In this figure, xi � yi � zi and xj � yj � zj are the body reference frame of bodies i and j;
respectively; uij

x; uij
y ; uij

z are relative displacements of body j with respect to body i; fij
x; fij

y ; fij
z are

relative angles of body j with respect to body i; and L0 is the initial distance between bodies i and
j: The generalized forces due to the beam element can be obtained as follows:

Qi ¼
AiFbeam

Tbeam þ AiT *dijAiFbeam

" #
; ð38Þ

Qj ¼
�AiFbeam

�AjTAiTbeam

" #
; ð39Þ
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Fig. 7. Natural frequency variation versus angular speed.

Fig. 8. Structural system example (cantilever beam).
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where Ai and Aj are orientation matrices of bodies i and j; respectively and the distance vector dij

is defined as follows:

dij ¼ ½Ai�

L0 þ uij
x

uij
y

uij
z

2
64

3
75: ð40Þ

The force and the torque due to beam can be calculated as follows:

Fbeam

Tbeam

" #
¼

K11 0 0 0 0 0

0 K22 0 0 0 K26

0 0 K33 0 K35 0

0 0 0 K44 0 0

0 0 K35 0 K55 0

0 K26 0 0 0 K66

2
6666666664

3
7777777775

uij
x

uij
y

uij
z

fij
x

fij
y

fij
z

2
66666666664

3
77777777775
: ð41Þ
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Fig. 9. Two contiguous bodies connected by a beam element.

Table 5

Geometric and material properties of a beam

Notation Numerical data

L (length) 6:0 m
r (mass per unit length) 1:2 kg=m
E (Young’s modulus) 7:0E10 N=m2

A (cross-section area) 4:0E–4 m2

I (the area moment of inertia) 2:0E–7 m4

r (hub radius) 0:3 m
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Since the Euler beam theory is used, the elements Kij can be defined as follows:

K11 ¼ EA=L; ð42Þ

K22 ¼ 12EIzz=L3; ð43Þ

K26 ¼ �6EIzz=L2; ð44Þ

K33 ¼ 12EIyy=L3; ð45Þ

K35 ¼ 6EIyy=L2; ð46Þ

K44 ¼ GIxx=L; ð47Þ

K55 ¼ 4EIyy=L; ð48Þ

K66 ¼ 4EIzz=L; ð49Þ

where E and G are Young’s modulus and shear modulus of the material; Ixx; Iyy; and Izz are the
area moments of inertia; and L is the length of a beam. More detailed information about the beam
element can be found in Ref. [16].
Table 6 shows the lowest three natural frequencies of the cantilever beam versus the angular

speed of the rigid hub. The results obtained by the present multibody formulation are compared
to those obtained by the method in Ref. [17]. The two results are in good agreement. The relatively
small differences originate from the use of consistent mass in Ref. [17]. In Ref. [17], a non-
Cartesian stretch variable along with the Rayleigh–Ritz assumed mode method is employed to
derive the equations of motion. As shown in the results, the natural frequencies increase as the
angular speed increases. This phenomenon is well known as the stiffening effect of the rotating
beam.

5. Conclusions

In this paper, a computational algorithm is proposed to find the modal characteristics of
multibody systems undergoing steady state rotational motion. Such multibody systems are often
found in engineering examples. The equations of motion are derived by employing relative
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Table 6

Natural frequency variations versus angular speed

Angular speed (rad/s) First frequency (rad/s) Second frequency (rad/s) Third frequency (rad/s)

Present Ref. [17] Present Ref. [17] Present Ref. [17]

10.0 11.71 11.71 70.37 70.44 189.7 189.9

20.0 14.28 14.29 81.93 82.05 203.2 203.6

50.0 23.09 23.21 137.2 137.6 278.3 279.5

70.0 28.79 29.06 180.0 180.6 342.5 344.5

100.0 37.06 37.75 246.7 247.5 446.5 449.7
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co-ordinates and linearized at the dynamic equilibrium position. The mass and the stiffness
matrices for the modal analysis can be obtained from the linearized equations. To verify the
effectiveness and the accuracy of the proposed method, three numerical examples are solved. The
results obtained by using the proposed method are compared to those obtained by analytical or
previous numerical methods. It is proved that the proposed method provides accurate modal
characteristics of multibody systems undergoing steady state rotational motion. The proposed
method can be easily implemented into any existing multibody computer programs. Since the
method does not necessitate numerical integration, it is superior to any existing methods that
employ numerical integration.
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